HSCを用いた(多波長+) 形態・時間変動解析による 銀河研究

Hitoshi HANAMI, Tsuyoshi ISHIGAKI (Iwate Univ.) AKARI Extragalactic Survey Team PASJ (2012), 64, 70

2012/09/27, HSC 研究会@天文台

HSC/AKARI Synergy for Gal.Ev.

Luminous IR Galaxies $@z \sim 1$ (黄昏れた五月蝿い奴)

- Active Systems with Star + ISM(Dust) + AGN
- SF & AGN Activities were Peaked $@z \sim 1-2$
 - What quenched SF around z < 1?
 - Dusty SED Analysis; Takagi+2004

Using AKARI/IRC $2 - 24 \mu m$

 $9, 11, 15, 18 \mu {\rm m}$ cover IRAC/MIPS Gap

AKARI Deep Field (ADF)-North/NEP

Observatory	Band/Filter	Area	Sensitivity
AKARI/IRC	$2\text{-}24\mu\mathrm{m}$	$0.4 \ \mathrm{deg}^2$	$90\mu Jy(15\mu m)$
Subaru/S-Cam	BVRi'z'	$27' \times 34'$	B < 28.2
KPNO2.1/FLMG	JK_s	$4 \times 27' \times 34'$	$K_s < 22$
CFHT/M-Cam	u(g'r'i'z')	$1(2) \deg^2$	u < 26
Subaru/FOCAS	Opt.Spec.	57 sources	R < 24
Keck/DEIMOS	Opt.Spec.	420 sources	R < 24

Observed:Chandra(PI:M.Krumpe),WSRT&GMRT,GALEX,..

 \cdot Synergy of S-Cam & AKARI

Spectroscopic Follow-ups with DEIMOS

Subaru-Keck T.E.P. S08B (PI:Takagi); Synergy of S-Cam & DEIMOS

- Determine z_{spec}
 - $\sim 100 \text{ BBGs}$
 - ~ 60 LIRGs
- Confirm *z_{phot}*
- Select **BL AGNs**
- SFR([OII]) etc.

$z_{phot}, M_*, A_V, SFR_{UV}$ for ~ 1000 LIRGs

No.31631

MIR SED $\rightarrow L(tIR) \rightarrow SFR_{IR}, A_{UV;IR}$

No.31631

Wavelength (vm)

7.7 μ m PAH @ $z \simeq 1(1.5)$ detected with L15(L18W)

*M*_{*} **vs. SFR as Main Sequence** Large;SFR(IR+obs.UV), Small;SFR(Corr.UV)

 $\rm M_{*}$ / $\rm M_{\odot}$

SF Histories: SF vs. SF+AGN @z = (.5 - .8), (.8 - 1.2), > 1.2

· SFR Rapidlly Decreasing in SF+AGN \rightarrow AGN Queches SF?

$5\mu m$ as window for AGN $@z \simeq 0.6, 1, > 1.2$

 $5\mu m$: Gap between * and dust; excess with AGN

 $\nu L_{\nu}(5\mu m) \simeq 2 \times 10^9 L_{\odot} \left(\frac{M_*}{10^{11} M_{\odot}}\right)^{0.5} (1+z)^4$

AGN activities are Weak mass depedence, More rapid evolution than SFR

 A_{UV} vs. SFR:Evolution of Extinctions

Classical $A_{UV;opt}$ vs. Calorimetric $A_{UV;IR}$

 $\cdot A_{UV;IR} \leftrightarrow \text{Dense Regions} (\leftrightarrow \text{Si Self Abs.})$

 $\cdot A_{UV;opt} \leftrightarrow$ Diffuse Regions

Variance in ISM/Dust/Star distributions

$MIR \leftrightarrow (Expected)FIR/Submm$

- Si Abs. $\downarrow \rightarrow L_{FIR,Submm}$ \uparrow
- Herschel Follow-up becomes Essential!

Summary of SED studies

- Confirmation of z_{phot} with DEIMOS
- (U)LIRGs z=0.4-2 Classified into SF,SF/AGN,AGN
- AGN vs. SFR
 - lower SFR in SF+AGN z<0.8
 - AGN queching SF?
- $\nu L_{\nu 7.7,\nu 10} \rightarrow L_{tIR} \text{w/oAGN} \rightarrow SFR(IR + UV)$
 - sSFR Decressing, and Weak M_* dependence
- Extinctions; $A_{UV;Opt}$ but also $A_{UV;IR}$
 - Extinction Increasing Chemical Evolution
 - Si Depth $\leftrightarrow A_{UV;IR} A_{UV;Opt}$ Geometric Effects

Morphological Difference for AGN/SF

SFR(IR,UV) vs. L(8um,[OII])

Left; W/O, Right; With Extinction Correction,

- $L(8um) \propto SFR(IR), L([OII]) \propto SFR(UV)$
- $SFR(IR) \sim 3 SFR(corr.UV)$

Line Diagnostics (Preliminary)

 $\nu L_{\nu 7.7} (\nu L_{\nu 10} / \nu L_{\nu 7.7})^{-1}$ vs. L_{tIR}

 $L_{tIR} \simeq 10\nu L_{\nu 7.7} (\nu L_{\nu 10} / \nu L_{\nu 7.7})^{-1}$ ·\nu L_{\nu 10} / \nu L_{\nu 7.7}: Si Self Abs. @10\mu m

MIR marginally detected populations

4000Å/Balmer Break & 1.6 µm Bump

wavelength

uVi/uRJ is $z \simeq 0.6 / 1$ mimic of BzK

IRBGs BBGs on M_V vs. U - V

Solid; p-BBGs \leftrightarrow Red Sequene Open; s-BBGs \leftrightarrow Blue Cloud Small Gray; z'-detected galaxies

- **Bimodal S.P.** @z < 1: Red S. and Blue Cl.
- Stellar Pop. in s-LIRGs is Blue @z < 1
- AGN-LIRGs in Green $@z \sim 1$

