HSCを用いた超新星爆発研究

富永望 (甲南大) on behalf of HSC-transient team

Contents

- Objectives
- Cadence requirements
- Strategy
- Science cases

Objectives

- Type Ia SN
- Core-Collapse SN
- Shock Breakout
- Type IIn/IIL LSN
- Ultra-Bright Optical Transient
- GRB Orphan Afterglow
- QSO
- Tidal disruption event (TDE)

Time scales

Cadence requirements

- $\tau \sim day \rightarrow in a night and/or in a month$
 - SN shock breakout
 - solar system, [weak lensing (i): >10-30min]
- τ ~month \rightarrow in a month and in 2-4 months
 - SN Ia, core-collapse SN, GRB orphan afterglow
 - AGN
- $\tau \sim 1$ -several year(s) \rightarrow in 5 years
 - Super Luminous SN
 - AGN

Survey strategy

led by Nishizawa-san, Yasuda-san, Tominaga

- Dynamic scheduling is compatible with transient studies to balance completeness and maintain cadence in the multi bands.
- Satisfactions of cadence requirements have small disadvantage in completeness and dead time. (preliminary)
 - Wide: daily/monthly schedule for WL, shock breakout, SS, AGN
 - Deep/UD: 1 intensive year for SNe Ia, CCSNe & continuous obs. over 5 years for SLSNe

Transient finding

Catalog finding

- make a photometric catalog for a reference image
- compare it with a new catalog to find objects with flux variation

Image subtraction

- find variable objects in bright galaxies
- a powerful tool commonly used for SNe and low-luminosity AGN

Transient classification

led by Tanaka-san, Urata-san

- Color (evolution) & multicolor light curves
- Photometric/spectroscopic redshift

In Taiwan, we are testing

- support vector machine
- pattern mining

Preliminary

Transient server

led by Tominaga, Yasuda-san, Urata-san, Morokuma-san

Web interface

led by Tanaka-san

A list of SN candidates is available at ~10-20min after the exposure.

Minor planet (93951) 2000 WT179

Follow-up observation

- Photometry
 - continuous observation to obtain light curves
 - NIR light curves for SNe la at z>1
 - backup observation of HSC-deep/UD fields when the seeing or weather condition is bad
- Spectroscopy (8m-class telescopes needed)
 - within 1 night (SN shock breakout)
 - within 2 weeks (SNe Ia, CCSNe)
 - in the next semester (SLSNe)

Openuse, alert, and collaborations

Science cases

(deep)/UD

Type la SNe

- SDSS: 0.05 < z < 0.4
- SNLS: 0.3 < z < 1.0
- HST: z > 1.0
- DES: 0.3 < z < 1.0
 - ~5000 SN la

SN la @ z > 1 is still small number.

HSC-UD survey

~130 SN (~60 at z > 1) for S/N>5 ~80 SN (~20 at z > 1) for S/N>10 (3 bands detection)

Type la SNe -cosmology-

led by Yasuda-san

If we can use all S/N>5 sample in addition to UNION2 sample, error on Ω_M and w will be decreased by a factor of 2.

Type la SNe -rate-

led by Okumura-san

- SN la rate density
 - Most accurate SN la rate upto z~1.5
 - constrain delay time distribution

- delay time between star formation and SNe la
- constrain progenitor system

Core-collapse SNe

(deep)/UD

led by Tanaka-san

Available for free with SNe Ia cadence

Survey	Tel.	Redshift	# of SNe	
SNLS	CFHT	~0.3	120	
GOODS	HST	0.1-1.3	45	
HSC-UD	Subaru	0.2-1.0	~165	

wide/deep/UD

Shock breakout

led by Tominaga, Morokuma-san

- Brightest phenomenon (normal SNe @z~3)
- >3 g- and >1 r-bands obs. in 1 night
- 1st year science
- Discovery channel
 - only 3 events
 - no opt. obs.

	Num.SNe (1st year)	Num. SNe	Redshift	
			50%	10%
Wide	19	96	$\gtrsim 0.5$	$\gtrsim 0.9$
Deep	9	52	$\gtrsim 0.6$	$\gtrsim 1.4$
UD	2	14	$\gtrsim 0.8$	$\gtrsim 1.7$

Days since bolometric peak (observer frame) [Days]

Super Luminous Supernova

Rare extremely bright SNe

led by Moriya-san

CCSN detection @ z~4

Slow follow-up obs.

1-month stacked data

Moriya-san's talk for detail

Distance ladder in SNe

Hopkins & Beacom 06 and references therein

deep/UD

Other transients

GRB orphan afterglow

led by Huang-san & Urata-san

- off-axis view of GRBs
- 1 candidate in SDF data
- Tidal disruption event (TDE)

led by Kong-san

- a BH swallows an orbiting star
- several events observed so far
- Variable stars

led by Morokuma-san, Tominaga

- High proper motion stars
- RR Lyrae stars

Summary

- Many SN science cases are available with HSC-wide/deep/UD.
- Cadence requirements range from day to year (but are flexible and feasible).
- Science cases
 - SNe Ia: cosmology, rate, large sample at z>1
 - CCSNe: rate, large sample at z>0.5
 - Shock breakout: first detection in optical
 - SLSNe: detection at z~4
- Distance ladder in SNe upto z~4