HSCサーベイで探る 太陽系小天体の サイズ、軌道、カラー、 及び密度

太陽系初期の惑星形成過程と その後の衝突進化史解明のために

> 吉田二美 国立天文台

なぜ小天体なのか?

 小天体は分化していない「化石」 - 太陽系初期情報を そのまま残した貴重な過去の証拠(微惑星の生き残り)

 惑星は既に分化している – 太陽系初期の情報は大半が 失われている

太陽系(ひいては惑星系一般)の初期歴史を知りたいのなら、小天体に聞け!彼らは何でも知っている。

太陽系小天体研究グループ

日本 NAOJ

Takashi Ito Eiichiro Kokubo Shigeru Takahashi Naruhisa Takato Tsuyoshi Terai Fumi Yoshida

JAXA

Sunao Hasegawa Hirohisa Kurosaki Toshifumi Yanagisawa

Makoto Yoshikawa

約30人がアイディアを出し合ってきた。

Kinki Univ. Patryk Lykawka

JSGA Shin-ichiro Okumura Tsuyoshi Sakamoto Seitaro Urakawa

TITec Arika Higuchi 台湾 ASIAA Matthew Lehner Shiang-yu Wang

NCU Shinsuke Abe Chan-Kao Chang Ying-Tong Chen Wing-Huen Ip Daisuke Kinoshita Hsin-Wen Lin

プリンストン

Princeton University Ed Turner Amaya Moro-Martín Steve Bickerton

HSCサーベイで得られる科学的成果

これまで我々のグループで提案されている具体的科学目標

- Search for source region of NEAs in the main asteroid belt (近地球小惑星の起源)
- Investigation of the TNO dynamical classes (TNOの力学的構造の起源)
- Search for the evidence of giant planet migration (初期太陽系での大惑星の移動の証拠)
- Search for the new Binary KBOs (KBOでの衛星形成率)
- Search for "Planet X", eccentric large TNOs, inner-Oort cloud objects (Planet Xを探せ!)
- Investigation on the origin of meteorites (隕石の起源)
- Investigation on characteristic of fast rotators
 (高速自転小惑星形成のメカニズム)
- Study of asteroid fragmentation processes (小惑星の衝突進化)
- Search for the origin of Jupiter Family Comets (JFCの起源)
- Search for MBCs (隠れ彗星を探せ!)
- Determination of asteroid's density (天体密度の推定)

様々な太陽系小天体グループ

太陽に近い方から、近地球小惑星、メインベルト小惑星、ヒルダ群、トロヤ群、ケンタウルス、TNO(4種のdynamical グループ)、彗星、衛星など

それぞれの天体グループで研究目的や観測手法が異なる。

HSCサーベイ:広視野、多色、可視の撮像

様々なスペクトルcタイプ <u>天体の物質組成を反映。形成場所の情報源。</u> 例:小惑星帯ではSやC,木星付近はD-typeが 多い。

³ 1.0 0 0.4 Wavelength (μm)

HSCサーベイで明らかにしたいこと

太陽系研究で未だ解決されていない問題点(の一部)

- •惑星形成過程における問題点
 - •太陽系初期の<u>惑星</u>の動径方向の移動
 - •惑星移動に伴う小天体の大移動
- •太陽系内の物質分布(軌道、質量、組成(水など))
 - 太陽系初期に水はどこまで分布していたか
 - ・地球の水の起源
 - 小天体グループの総量
- 天体の衝突進化
 - 惑星形成終了後の衝突進化の様相

• 天体の密度

惑星形成過程における問題点

- 天王星、海王星形成が、現在の場所では時間がかかりすぎる
 - 天、海は少し内側で形成され、その後外側に移動。
 - 木、土、天、海はコンパクトにできて、その後移動。
 (Niceモデル,惑星形成から約6億年後のLHBを説明, Tsiganis et al. 2005, Science。バージョン多数)
 - 木星は現在の火星の位置まで移動し、その後外側へ移動。 (Grand tackモデル:火星の質量が小さい理由を説明, Walsh et al. 2011, Nature)
 - 惑星形成初期には5大惑星があり、一つが太陽系外に散乱。
 (Chambers 1999, Meteoritics; Nesvorny 2011, ApJL)

様々なモデルが林立している

▶ 太陽系初期に惑星の動径方向の移動がどのように起こったか
▶ 現在の小天体の軌道分布や天体表面のクレーターに記録。

Niceモデル

- 大惑星は内側でコンパクトに形成。
- ・木、土、海、天の配置。
- 残存微惑星との重力相互作用で 徐々に移動し、木、土が2:1の平 均運動共鳴に入った時、惑星の 軌道が大きく乱れる。
- 天、海が外側の微惑星帯の天体 を散乱。
- 特に海王星は軌道が外側に大き く膨らみ、大量の微惑星を太陽系 内部に落下させ、後期重爆撃期 (LHB)となった。
- 落下天体の一部は惑星のトロ ヤ群や、小惑星帯に入り込む。

-40

-20

0

20

40

 ✓ 仮定した惑星配置の初期条件が人為的?
 ✓ LHBは説明できるが、そもそもLHBの存在 自体が疑わしい。

⊤= 0.0 My

Grand tack モデル

Tackとは方向転換(惑星の移動方向が内→外へ)

- •太陽系形成開始から500万年頃。星雲ガ スが残っていた頃。
- 内側からS-type、C-typeの微惑星、大惑 星より外側には氷成分の多い微惑星帯。
- 木星は最初内側に移動し、土星が続き、1.5AUのところで両者は2:3共鳴に入り、移動の向きが反転。
- 木、土はS,C微惑星を散乱し、天、海は 外側の微惑星を散乱して外側へ。
- この結果、現在の小惑星あたりで、S、C、 他の微惑星が少数ずつ混ざった分布に なる。
- 木星に約1AUまで押し縮められたS-type 微惑星帯の中で地球型惑星成。火星の あたりでは物質が少ないので、火星は低 質量の惑星になった。

✓ 現在観測されるような小惑星帯小惑星のゾーニングが実現できるか微妙。
 ✓ 定量的な評価は出来ていない。

T =

0.0 kv

5つの大惑星のうち一つが 太陽系から放出される

- 木、土、3つの氷惑星が
 <15AUにある状態からス
 タート。木、土は3:2共鳴軌
 道にあった。
- •惑星は微惑星円盤と軌道 エネルギーを交換し、ある 限界を超えると共鳴から外 れて、大混乱。
- 4つの惑星からスタートする より、5つの惑星からスタート する方が、現在の太陽系の 配置になる確率が高かった。
 太陽系外へ散乱された惑 星はfree-floating惑星へ (Sumi et al. 2011, Nature)

惑星形成過程における問題点

- 天王星、海王星形成が、現在の場所では時間がかかりすぎる
 - 天、海は少し内側で形成され、その後外側に移動。
 - 木、土、天、海はコンパクトにできて、その後移動。
 (Niceモデル,惑星形成から約6億年後のLHBを説明, Tsiganis et al. 2005, Science。バージョン多数)
 - 木星は現在の火星の位置まで移動し、その後外側へ移動。 (Grand tackモデル:火星の質量が小さい理由を説明, Walsh et al. 2011, Nature)
 - 惑星形成初期には5大惑星があり、一つが太陽系外に散乱。
 (Chambers 1999, Meteoritics; Nesvorny 2011, ApJL)

様々なモデルが林立している

▶ 太陽系初期に惑星の動径方向の移動がどのように起こったか
▶ 現在の小天体の軌道分布や天体表面のクレーターに記録。

現在の小天体の軌道分布

• わかっていること

- 小惑星帯のスペクトルタイプ別小惑星の軌道、サイズ分布
- TNOには4つのdynamicalクラスがある

• これから観測すべきこと

- ヒルダ群、トロヤ群、TNOsのスペクト ルタイプ別軌道分布
 - →各天体群の形成場所
- TNOの4つのdynamicalクラスとスペ クトルタイプの相関

→4つのクラスの起源

 各グループのサイズ分布(総数、総 質量)定量的評価のために

太陽系内の水の分布

• Main Belt Cometsの発見

 小惑星帯で彗星活動を示す 天体が発見された

(Hsieh & Jewitt 2006, Science)。 現在9つ確認。

- 小惑星だが、衝突により一時的 にダストの尾が発生。
- 隠れ彗星:天体衝突が引き金となって彗星活動が現れた彗星。

小惑星帯の中にどれだけ隠れ彗星が いるかを知ることは、地球の水の起源 を知る上でも重要。 地球に衝突する可能性のある小惑星は小惑星 帯の小惑星が軌道進化したものだから。

PSFを恒星と比較することによって、MBC 候補を見つけることができる

天体グループ形成から現在までの衝突進化史

• 天体同士の衝突進化

- サイズ分布
 - 微惑星の生き残りか、衝突破片か。
 - 微惑星の生き残りと思われる大きい天体のサイズ分布(原初のサイズ分布を反映、 天体グループに固有の指紋のようなもの)が似ていれば同じ起源。
 - 例 木星のトロヤ群(L4,L5)のサイズ分 布は、大きなトロヤ群では同じ傾き。
 → 多分同一起源!
 - しかし、直径5km以下では傾きが異なる。

→ 多分小さい天体を
 取り除くメカニズム有り。
 L4の方が衝突頻度が
 高く、破片が共鳴から
 こぼれ落ちた?

天体グループ形成から現在までの衝突進化史

バイナリーの間隔

天体同士の衝突進化

- ・サイズ分布
 - 天体グループの最大サイズから直径1 km以下の天体までのサイズ分布がわ かっているのは近地球小惑星、メインベ ルト小惑星だけ。
 - TNOsでは170 < Dkm < 670のサイズ 分布が知られている。

<u>HSCではD~70kmまでサイズ分布が推定可能。</u>

• 衝突頻度や激しさ

• 衛星形成率

バイナリーの質量比 バイナリーの質量比 iad Elliptical point-spread function fittingを使って衛星を持つ 天体候補探しができる。

HSCサーベイのUltra Deep サーベイモードで、一つの視 野を連続観測し、小天体の 光度曲線が得られれば、天 体の密度を推定することがで きる。

できる場合がある。

shows the best-fitted models for different o values. The weight fact

$$\frac{(3 + 1/q)a^{2} + c^{2}}{(1/q)b^{2} + c^{2}} = \frac{a^{2}A_{1} - c^{2}A_{3}}{b^{2}A_{2} - c^{2}A_{3}}$$
(4a)

$$\frac{q}{1+q} \frac{\omega^2}{\pi G \rho} = 2 a b c \frac{a^2 A_1 - c^2 A_3}{(3+1/q) a^2 + c^2},$$
 (4b)

$$A_1 = \frac{2}{a^3 \sin^3 \phi} \frac{1}{\sin^2 \theta} \left[F(\theta, \phi) - E(\theta, \phi)\right] \qquad (5a)$$

$$A_2 = \frac{2}{a^3 \sin^3 \phi} \frac{1}{\sin^2 \theta \cos^2 \theta} \times (5b)$$

$$\begin{bmatrix} E(\theta, \phi) - F(\theta, \phi) \cos^2 \theta - \left(\frac{c}{b}\right) \sin^2 \theta \sin \phi \end{bmatrix}$$

$$A_3 = \frac{2}{a^3 \sin^3 \phi} \frac{1}{\cos^2 \theta} \left[\left(\frac{b}{c}\right) \sin \phi - E(\theta, \phi) \right], \quad (5c)$$

where $E(\theta, \phi)$ and $F(\theta, \phi)$ are the standard elliptic integrals of the two kinds with arguments

6

$$\phi = \arcsin \sqrt{\frac{a^2 - b^2}{a^2 - c^2}}$$
 and $\phi = \arccos \left(\frac{c}{a}\right)$. (6)

太陽系小天体ゆえの観測の制限①

移動天体の速度-検出とfollow-up-

天体グループ	太陽か らの距 離(AU)	秒角/分	HSCの視野を通り 抜けるのにかかる 時間(day)
火星交差軌道 小惑星	1.5	0.90	4.15
メインベルト 小惑星(内側)	2	0.72	5.20
メインベルト 小惑星(外側)	3.2	0.49	7.60
ヒルダ群	4	0.41	9.14
木星トロヤ群	5.2	0.33	11.39
カイパーベルト天体 (海王星軌道)	30	0.07	54.03
カイパーベルト天体 (冥王星軌道)	40	0.05	70.55
Classical beltの外 側の端	50	0.04	86.91

✓移動の速い、地球に近い天体は数 日以内にfollow-upしないと見失う。
✓遠方の天体は数ヶ月以内にfollowupできれば良い。

イマウナケアのシーイングサイズを考えると、カイパーベルト天体は20分以上間 隔を空けて撮像しないと移動がわからない。

太陽系小天体ゆえの観測の制限② 移動天体の相対速度と明るさ - 検出効率を低下させないように -

太陽系小天体の観測の制限③

- 小惑星の形が不規則なため、自転と ともに明るさが変化。
- 多色測光する際には、R-B-R-V-R-I-R...として、自転による光度変化の影響を最小限に。
- HSCサーベイでは頻繁なフィルター 交換は不可。
- 数回測光の平均値で、どのくらい精度よくB-V,V-R,V-I等が求められるかシミュレーションしてみた。

どの時間間隔でも5回 の撮像で、等級決定精 度が測光誤差の0.1等く らいに収まる。 5回くらい撮像しておけ ば、自転による光度変 化をキャンセルできる。

 ▶自転周期:30-600分
 ▶振幅:0.27等(メインベルト小惑星の平均値)のsin カーブを仮定。
 ▶測光誤差:0.10等
 ▶観測間隔:30分、1時間、2時間、1日間隔で連続N回撮像

撮像回数 vs 等級決定精度

Suprime-Camで黄 道面近くの衝の位 置(太陽の真反対) を撮像した図。

一回の露出は120
 秒。観測継続時間は約8時間。

約240個の移動
 天体検出。

 HSCで同じような 観測をすれば1視 野に1500個くらい か?

結構込み合って
 いるので、撮像間隔
 をうまく設定しないと、
 天体の同定、軌道
 決定が難しくなる。

まとめ

- ・惑星形成過程で懸案の初期の惑星配置やその後の軌道 進化の様相←小天体の軌道、多色測光のデータ、サイズ分布
- 太陽系内の水分布←MBCの検出。PSF fittingで彗星活動の 検出
- 小天体グループ形成から現在までの衝突進化史←小天体の軌道、サイズ分布、PSF fittingでバイナリー候補の検出
- 各小天体の密度 ← 光度曲線

HSCサーベイへの要望

✓ 適切な時間間隔での撮像
 例 1晩に1時間間隔で3回、翌日2回、数日離してもう2回とか。
 ✓ できるだけ衝付近を撮像
 ✓ 各バンドで5回以上撮像

HSCサーベイで得られる科学的成果

これまで我々のグループで提案されている具体的科学目標

- Search for source region of NEAs in the main asteroid belt(近 地球小惑星の起源)
- Investigation of the TNO dynamical classes(TNOの力学的構造の 起源)
- Search for the evidence of giant planet migration (初期太陽系での大惑星の移動の証拠)
- Search for the new Binary KBOs(KBOでの衛星形成率)
- Search for "Planet X", eccentric large TNOs, inner-Oort cloud objects(Planet Xを探せ!)
- Investigation on the origin of meteorites(隕石の起源)
- Investigation on characteristic of fast rotators(高速自転小惑星形成のメカニズム)
- Study of asteroid fragmentation processes(小惑星の衝突進化)
- Search for the origin of Jupiter Family Comets(JFCの起源)
- Search for MBCs(隠れ彗星を探せ!)
- Determination of asteroid's density(天体密度の推定)

ポスター「HSCサーベイによる太陽系外縁天体観測」寺居 et al.

