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Motivation 

How are galaxies related to the dark matter density field?

?

Hubble deep field Millenium simulation
Springel et al. 2005



Three Dark Matter Probes
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The galaxy stellar mass function :
• Number of galaxies per unit volume
• “easy” to calculate
• Typically modelled through “abundance matching”
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Galaxy auto correlation function  :
• Excess probability above random of finding two 

galaxies with a given separation
• Typically modelled through HOD models
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y Galaxy-galaxy lensing :
• Measures the galaxy-matter correlation function
• Weak signal that is difficult to measure
• Tells us directly about the galaxy-dark matter 

connection
3
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The galaxy-dark matter connection
• Building a more robust probe
• Galaxy formation
• Informing semi-analytic models

Cosmological parameters: Ωm, σ8

e.g, van den bosch et al. 2012, More et al. 2012, Cacciato 
et al. 2012         the combination of lensing and 
clustering is a cosmological probe.

Modified gravity as an alternative to Dark 
Energy
Φ: dynamics
Ψ+ Φ: lensing of light around galaxies
       Screening mechanisms on linear, quasi linear scales. 
Need to understand the galaxy-dark matter connection.

Motivation for combining dark matter probes
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Predicted constraints for SDSS galaxies

Cosmological Constraints from Clustering & Lensing 7

Figure 1. Cosmological constraints in the Ωm − σ8 plane that can be obtained by analysing available SDSS measurements of the
luminosity function (Φ), galaxy-galaxy lensing signal (∆Σ) and the projected clustering measurements (wp). The 68, 95 and 99 percent
confidence levels shown by green, yellow and blue contours correspond to the constraints possible when only the Φ and ∆Σ data are
analysed, when only Φ and wp data are used, and when all three Φ, ∆Σ and wp data are used in conjunction, respectively. The three
panels correspond to different priors assumed on the cosmological parameters as indicated at the top of each panel. Note that, in addition
to all the CLF parameters and other secondary cosmological parameters, we have also marginalized over the nuisance parameters of our
model, η and ψ. The dotted contours in the middle panel show the 68, 95 and 99 percent confidence levels obtained by WMAP7.

Figure 2. Same as Fig. 1, except for the assumption that the galaxy-galaxy lensing signal (∆Σ) has been measured upto large scales
(∼ 30 h−1Mpc) and is modelled using our analytical framework.

The logarithmic derivatives of the luminosity function, pro-
jected galaxy clustering and the galaxy-galaxy lensing signal
are presented in Appendix A, together with a detailed dis-
cussion.

Throughout this paper, we assume that the covariance
matrix for the luminosity function and the galaxy-galaxy
lensing signal is diagonal and calculate the Fisher informa-
tion matrix by using Equation 30. For the galaxy clustering
data, we assume that the errorbars are correlated in a man-
ner which is quantitatively equal to the correlations that ex-
ist in the measurements of the projected clustering of SDSS
galaxies carried out by Zehavi et al. (2011). We make use of
Eq. (29) to calculate the Fisher information matrix for the
galaxy clustering data.

4 PARAMETER CONSTRAINTS AND

COVARIANCES

In this section, we forecast the accuracies with which con-
straints on cosmological parameters can be obtained given
the accuracy of the current datasets. To obtain these
bounds, we first calculate the Fisher information matrix, F̃ij ,
by varying the parameters listed in Tables 1 and 2. We calcu-
late the Fisher matrix separately for each of the datasets. As
each of the datasets is independently measured, the Fisher
information matrix is additive. The inverse of the Fisher
matrix gives the covariance matrix, C, and the diagonal el-
ements of this covariance matrix, Cii, represents the accu-
racy with which the i-th parameter can be constrained after
marginalizing over the other parameters. In Appendix B,
we present the procedure we use to obtain 68, 95 and 99

c© 0000 RAS, MNRAS 000, 000–000

Cosmological constraints from combining galaxy galaxy lensing 
and galaxy clustering:

Van den Bosch et al 2012, More et al. 2012, Cacciato et al. 2012

lensing + clustering

lensingclustering

WMAP contours



This technique compared to cosmic shear

L. Fu et al.: Very weak lensing in the CFHTLS wide 21
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Fig. 13. Comparison (1, 2σ) between WMAP3 (green contours, Spergel
et al. 2007) and our 〈M2

ap〉-results in linear scale only (85′−230′, purple).
The combined contours of WMAP3 and CFHTLS Wide are shown in
orange.

comparison with clusters of galaxies is, in contrast, less con-
clusive. Cluster observations estimate a broad range of σ8 val-
ues, with some being fully consistent with our results Gladders
et al. (2007), (see also Hetterscheidt et al. 2007, for a compi-
lation of results), while a recent analysis of simulations argue
for higher values (Evrard et al. 2007; Yepes et al. 2007). The
trends for a high value of σ8 are also derived from analyses of
the Lyman-alpha forest (see Slosar et al. 2007, and reference
therein).

7. Contamination by shear-shape correlation

The gravitational lensing signal may be contaminated by the in-
trinsic alignment and by the gravitational shear and intrinsic el-
lipticity (or shear-shape) correlations. We do not consider the
first term since it would be negligible due to a broad redshift dis-
tribution of our sample. On the other hand, Mandelbaum et al.
(2006) and Hirata et al. (2007) pointed out that the shear-shape
anti-correlation may bias the estimate of σ8 by 1 to 20% for a
〈z〉 = 1 survey on angular scales that we have explored in this
work. It is therefore important to estimate its amplitude and to
which extent it may spoil our cosmological constraints.

We attempt a rather simple analysis of the shear-shape corre-
lation (GI) contribution to the shear signal. We use the following
simple model for the GI correlation function ξGI, which is moti-
vated by numerical simulations (Heymans et al. 2006b)

ξGI(θ) = E
A
θ + θ0

· (17)

The lensing efficiency E is weighted by the source redshift
distribution

E =
χlim∫

0

dχl n(χl)

χlim∫

χl

dχs n(χs)
fK(χl) fK(χs − χl)

fK(χs)
·

For our fiducial flat model with Ωm = 0.25 and the redshift dis-
tribution of Table 1, we obtain E = 95.54 Mpc/h. We fix the
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Fig. 14. The measured ξE and ξB (open symbols and error bars) with the
lensing-only best-fit curve (solid blue line) and the allowed fractional
±1σ-contribution of ξGI to the total signal (shaded cyan region).

scale θ0 to 1 arcmin, and further set ξGI = 0 on scales larger than
1 degree.

We perform a combined likelihood analysis using the six
cosmological parameters as described in Sect. 6.2 and the GI am-
plitude A. The sum ξE + ξGI is fitted to the data. Since the
7D-likelihood analysis is very time-consuming, we use the
marginalised 2σ likelihood-region from the pure lensing anal-
ysis (Sect. 6.3) as a flat prior and do not consider models outside
this region. The marginalised result on A is consistent with zero.
We find for the amplitude A in units of [10−7 h/Mpc arcmin],

A = 2.2+3.8
−4.6 for 1′ < θ < 230′,

where the error indicates the 68% confidence region. Figure 14
shows there is no significant signal detected at any scales. The
positive (negative) limit from all scales imply a +32% (−13%)
contamination of the total signal by GI at one arcmin.

Although the confidence region for the constrained GI ampli-
tude is large it favours positive correlations, whereas from theory
we would expect the GI signal to be negative (Hirata & Seljak
2004). As a consistency check we used a cosmology prior given
by the marginalised 1σ likelihood region from a pure lensing
analysis of the large scale results with θ > 60 arcmin. The model
ξE+ξGI is then fitted on scales with θ < 60 arcmin. The resulting
marginalised likelihood for A favours negative GI models but is
still consistent with zero. This ansatz gives a high weight to the
large-scale cosmic shear signal, and any systematics still present
will influence the result. The large scale increase in the measured
star-galaxy cross correlation shown in Fig. 7 highlights this con-
cern. As we cannot currently distinguish between GI and other
possible systematic effects we can only conclude from our sim-
ple analysis that we find no evidence for a non-zero GI signal.

If our galaxy sample is strongly dominated by high-redshift
spiral galaxies, then the GI signal may be considerably weak-
ened, as one can anticipate from the morphological analysis of
Mandelbaum et al. (2006). We do not have enough colour data to
explore in detail the spectral/morphological types of the galax-
ies used in this work. However, Zucca et al. (2006) pointed out
that about 80% of the VVDS spectroscopic galaxy sample up to
i′AB = 24 is composed of spiral-like galaxies. It is then possible
that the fraction of spirals is much higher than elliptical galaxies
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Figure 1. Cosmological constraints in the Ωm − σ8 plane that can be obtained by analysing available SDSS measurements of the
luminosity function (Φ), galaxy-galaxy lensing signal (∆Σ) and the projected clustering measurements (wp). The 68, 95 and 99 percent
confidence levels shown by green, yellow and blue contours correspond to the constraints possible when only the Φ and ∆Σ data are
analysed, when only Φ and wp data are used, and when all three Φ, ∆Σ and wp data are used in conjunction, respectively. The three
panels correspond to different priors assumed on the cosmological parameters as indicated at the top of each panel. Note that, in addition
to all the CLF parameters and other secondary cosmological parameters, we have also marginalized over the nuisance parameters of our
model, η and ψ. The dotted contours in the middle panel show the 68, 95 and 99 percent confidence levels obtained by WMAP7.

Figure 2. Same as Fig. 1, except for the assumption that the galaxy-galaxy lensing signal (∆Σ) has been measured upto large scales
(∼ 30 h−1Mpc) and is modelled using our analytical framework.

The logarithmic derivatives of the luminosity function, pro-
jected galaxy clustering and the galaxy-galaxy lensing signal
are presented in Appendix A, together with a detailed dis-
cussion.

Throughout this paper, we assume that the covariance
matrix for the luminosity function and the galaxy-galaxy
lensing signal is diagonal and calculate the Fisher informa-
tion matrix by using Equation 30. For the galaxy clustering
data, we assume that the errorbars are correlated in a man-
ner which is quantitatively equal to the correlations that ex-
ist in the measurements of the projected clustering of SDSS
galaxies carried out by Zehavi et al. (2011). We make use of
Eq. (29) to calculate the Fisher information matrix for the
galaxy clustering data.

4 PARAMETER CONSTRAINTS AND

COVARIANCES

In this section, we forecast the accuracies with which con-
straints on cosmological parameters can be obtained given
the accuracy of the current datasets. To obtain these
bounds, we first calculate the Fisher information matrix, F̃ij ,
by varying the parameters listed in Tables 1 and 2. We calcu-
late the Fisher matrix separately for each of the datasets. As
each of the datasets is independently measured, the Fisher
information matrix is additive. The inverse of the Fisher
matrix gives the covariance matrix, C, and the diagonal el-
ements of this covariance matrix, Cii, represents the accu-
racy with which the i-th parameter can be constrained after
marginalizing over the other parameters. In Appendix B,
we present the procedure we use to obtain 68, 95 and 99

c© 0000 RAS, MNRAS 000, 000–000

Lensing + Clustering Cosmic shear

More et al. 2012

Fu et al. 2008

• Comic shear often has a large degeneracy in the  σ8 - Ωm plane
• The two techniques have very different systematics



BOSS + HSC

• Baryon Oscillation Spectroscopic Survey: 1.5 million massive 
red galaxies with spectroscopic redshifts at z=0.55 over 10,000 

square degrees (2009-2014)

• Hyper Suprime Cam : overlaps with the BOSS survey and will 
measure the galaxy-galaxy lensing signal of BOSS galaxies with 

high precision.

Will measure galaxy clustering, wp(rp),  with 
high precision

Will measure galaxy-galaxy lensing, ΔΣ,  with 
high precision



Some first measurements for BOSS

These are some measurements I have made for BOSS galaxies.
CS82: a CFHT survey of Stripe 82 (170 deg2, seeing <0.8”)

Galaxy-galaxy lensing measured from 
the CS82 survey of Stripe 82 

(1/10th HSC area)

Z~0.55

The Astrophysical Journal, 728:126 (10pp), 2011 February 20 White et al.

Figure 5. Projected correlation function for the 0.4 < z < 0.7 sample in
regions A, B, and C (lines) and for the combined sample (points with errors).
The errors on the individual samples have been suppressed for clarity. The data
are combined using the full covariance matrix, but only the diagonal elements
are plotted. The wp implied by a power-law correlation function of slope −1.8
and correlation length of 7.5 h−1 Mpc forms a reasonable fit to the data with
1 < Rp < 10 h−1 Mpc but we do not plot it here for clarity. The (thick)
long-dashed-dotted line shows the prediction of the best-fitting HOD model
(Section 4), which provides a reasonable fit on all scales plotted (recall the
errors are correlated).

where w(α)
p represents the vector of wp measurements from

region α = A, B, or C. Not surprisingly, the combined result is
dominated by the results from region C. To reduce the condition
number of the covariance matrix, and the dynamic range in wp,
we fit throughout to R wp and quote the results in that form. The
wp points are quite covariant, in part because the integration in
Equation (7) introduces a large mixing of power at different
R, thus use of the full covariance matrix is essential. The error
bars on the individual w(α)

p have been suppressed in the figure
for clarity, and the square root of the diagonal elements of the
covariance matrix is shown as error bars on the combined result.

We also subdivided the redshift range into a low-z and high-z
half, splitting at z = 0.55, and found no statistically significant
difference between the two samples (Figure 6; in the split
samples the fiber collision correction is more uncertain, so the
disagreement at the smallest R point is not very significant).
This result motivates our decision to analyze the data in a single
redshift slice. Slow evolution of the clustering is expected for a
highly biased population such as our luminous galaxies where
the evolution of the bias approximately cancels the evolution of
the dark matter clustering (Fry 1996).

Even with only the eight data points in wp, deviations from
a pure power-law correlation function are apparent. These can
be traced to the non-power-law nature of the mass correlation
function and the way in which the galaxies occupy dark matter
halos—we will return to these issues in Section 4.

The calculation of errors in clustering measurements can
be done in a number of different ways (see Norberg et al.
2009 for a discussion). We first tried a bootstrap estimate,
dividing the survey regions into 8–22, roughly equal area
“pixels” and sampling from these regions with replacement
(Efron & Gong 1983). Unfortunately, the irregular geometry
and relatively small sky coverage meant that we were not able
to obtain a covariance matrix which was stable against changes
in the pixelization. We anticipate that as the survey progresses
this technique will become more robust. In the meantime,

Figure 6. Projected correlation function of the high- and low-z samples (lines),
split at the mid-point of the range, and of the full sample (points with errors),
indicating that the clustering is evolving little and the sample can be analyzed
in one wide redshift bin.

we computed the covariance from a series of mock catalogs
derived from an iterative procedure using N-body simulations
as described in the Appendix. We will show in Figure 13 that
the distribution of χ2 from our mock catalogs encompasses
the value obtained for the data in regions A, B, and C if both
are computed using the mock-based covariance matrix and the
best-fitting HOD model (Section 4). This indicates that the
measurements we obtain are completely consistent with being
drawn from the underlying HOD model, given the finite number
of galaxies and observing geometry.

3.2. Redshift-space Clustering

The angle-averaged redshift space correlation function, ξ (s),
for the 0.4 < z < 0.7 sample is shown in Figure 7. Again,
the data were analyzed separately in each of regions A, B, and
C. The dot-dashed line shows the same power-law correlation
function as described in Figure 5, while the solid line shows the
predicted ξ (s) from the model that best fits the wp data (above).
The enhancement of clustering over the real-space result on large
scales (Kaiser 1987; for a review see Hamilton 1998 and for
recent developments see Pápai & Szapudi 2008; Shaw & Lewis
2008) is evident in the comparison of the data to the power law.
The good agreement between the data and the HOD model below
a few Mpc is indication that the satellite fraction in the model is
close to that in the data and the relative motions of the satellite
galaxies are close to the motions of the dark matter within the
parent halos (i.e., any velocity bias is small). The characteristic
down-turn on scales smaller than a few Mpc is expected from
virial motions within halos and the motion of halos themselves.
The excess power of the HOD model compared to the data on
scales of a few Mpc can be mitigated by increasing the degrees of
freedom in the model, for example by dropping the assumption
that central galaxies move with the mean halo velocity or follow
the dark matter radial profile or allowing a modest amount of
satellite velocity bias.

On scales below tens of Mpc the violations of the distant
observer approximation are small, but on larger scales they begin
to become appreciable (Pápai & Szapudi 2008) and should be
included in any comparison between these data and a theoretical
model (most noticeably for the higher multipoles).

5

Galaxy clustering from BOSS
(now calculating newer version)

White et al, 2011



Conclusions

❖ Cosmic shear is not the only way to do cosmology with 
weak lensing.

❖  We can also use a combination of galaxy-galaxy lensing and 
galaxy clustering.

❖  With this we can also put constraints on neutrino masses 
and we can test modified gravity theories.

❖ Very different systematics than cosmic shear

“The Next Generation of Weak Lensing Surveys” 
3 week Aspen summer workshop, June 16 2013. 

Application deadline: Jan 31st 2013.
Alexie Leauthaud, Rachel Mandelbaum, Ludo van Waerbeke, Bhuvnesh Jain


